

File Input Component

FM3TR Waveform Reference Implementation

SDR Forum Contract

March 23, 2007

Revision 1.0

 2

Table of Contents

1 COMPONENT NAME 3
2 COMPONENT PROCESSING SUMMARY 3
3 WHERE USED 3
4 DATA INPUT AND OUTPUT PORTS 3
5 CONTROL INTERFACES 3
6 COMPONENT SCA PROPERTIES 3
7 COMPONENT ATTRIBUTES/KEY VARIABLES 4
8 PROCESSING DETAILS 4

8.1 METHOD: ASSEMBLEHEADER() 5
8.2 METHOD: ASSEMBLEPACKET() 5
8.3 METHOD: ASSEMBLEDUMMYPACKET () 5
8.4 METHOD: SIGNALHIGHWATERMARK() 6
8.5 METHOD: SIGNALLOWWATERMARK() 6
8.6 METHOD: SIGNALEMPTY() 6
8.7 METHOD: SIGNALNAK() 6

 3

1 Component Name
FileInput_MAC_LLC

2 Component Processing Summary
The FileInput_MAC_LLC component reads an external file, divides it into blocks
(“packets”), and pushes them to the next component. It improves upon the regular
FileInput component by introducing media access control (MAC) and logical link control
(LLC) interfaces such that packets may be retransmitted if necessary. It also encodes
information about the file in a special header packet that the FileOutput_MAC_LLC
component can interpret. This ensures that in the absense of a noisy channel, the output
file will be received correctly.

3 Where used
The FileInput_MAC_LLC component is used in all extended data waveforms.

4 Data Input and Output Ports
The FileInput_MAC_LLC component has just one uses port,
“FileInput_MAC_LLC_Out,” which pushes a sequence of octets.

5 Control Interfaces
The FileInput_MAC_LLC inherits the control interfaces from CF::Resource.

Additionally, the FileInput_MAC_LLC component has three control interfaces:

MAC_ErrCtrl_Input Packet error control feedback input
interface

MAC_FlowCtrl_Input Flow control input for adaptive data
rate

FileInput_MAC_LLC_LLC_Ctrl_Out LLC control output interface for
FM3TR_Packetizer component

6 Component SCA Properties
Aside from the DLL execparams, the FileInput_MAC_LLC component has three
properties. The table below lists these properties along with a brief description.

Simple Name CORBA Type Description

Input_File_Name string Name and path to the file to be read.

Input_Data_Type string Type of data to be read (includes “octet,”
“char,” “short,” “ushort,” “long,”

 4

“ulong,” “float,” and “double”).

Num_Data_Elements ushort Number of data elements to read at a time

These properties are the same as the regular FileInput component.

7 Component Attributes/Key Variables
Below is a list of several key variables to the FileInput_MAC_LLC component with a
brief description of their purpose.

file_in Input file

data_type Type of data to be read from the file

data_size Size of data to be read from the file

packetCounter Number of packets currently read from the file

eof Boolean value set to true of the end of the file
has been reached

num_data_elements Number of data elements in the file

m_bPauseFlow Pause execution of Run() method

packetFeedbackCounter Number of packets received

errorPackets Running list of erroneous packets

retransmissionMode Boolean value specifying if the entire file has
been sent, and thus the retransmission of
erroneous packets can begin

8 Processing Details
Packets are passed from the FileInput_MAC_LLC component in blocks of size
Num_Data_Elements, as determined by the properties file. Data are usually passed to
the RsBlockEncoder component in sequences of length 72 as this is precisely the size that
the encoder requires. Furthermore, the input data are assumed to be ASCII which have
only seven significant bits, a symbol the RsBlockEncoder can recognize.
The FileInput_MAC_LLC component improves upon the limitations of the regular
FileInput component by introducing control interfaces for packet re-transmissions,
encoding a special header to tell the receiver both the number of packets to expect as well
as the number of elements in the last packet, and finally zero-padding the last block such
that the sequence has exactly 72 elements. The methods to achieve this are described in
brief below.

 5

8.1 Method: AssembleHeader()
The RsBlockEncoder component expects data in blocks, each with 72 elements. An
obvious problem will arise if the input file does not contain an integer number of 72: the
RsBlockEncoder will not have enough data to process. The FileInput_MAC_LLC
component fixes this problem by first sending a special header packet that includes
information about the file, including the total number of packets and the number of
elements in the last packet. The AssembleHeader() method parses the file to obtain this
information and writes it to an output buffer. This header contains the following pieces
of information:

• Calling platform address

• Called platform address

• Number of packets in the file

• Number of elements in the last packet

8.2 Method: AssemblePacket()
Because the FileInput_MAC_LLC component has the capability of retransmitting
packets, it is necessary to access a specific packet. The AssemblePacket() method
achieves this by rewriting the block of data in the output buffer corresponding to the
appropriate packet.

8.3 Method: AssembleDummyPacket()
Due to the FM3TR specification that a block consists of exactly 10½ hops, an even
number of blocks need to be pushed to the RsBlockEncoder component for the data to
reach the RsBlockDecoder. This is because the RsHopEncoder must wait for its input
buffer to fill (equivalent to a full “hop”) before it can encode the data. An odd number of
blocks implies that only half of the 11th hop has reached the RsHopEncoder, which in
turn implies that the RsBlockDecoder has only 10 full hops and not the necessary 10½.
The FileOutput_MAC_LLC component will not receive the first block of transmitted
data until that half hop finally reaches the RsHopEncoder. For this reason, it is necessary
to flush the components’ buffers with a full block of “blank” data which the receiver can
ignore. This is necessary as the MAC and LLC extensions require that the number of
acknowledgements (ACKs) and negative acknoweledgments (NAKs) be counted before
proceeding, thus after each retransmission ad “dummy” packet must be transmitted to
flush the components’ buffers. The AssembleDummyPacket() achieves this. Although
this seems inefficient at first, one must keep in mind that packet errors are often rare, and
thus the additional overhead for packet retransmissions is not detrimental to the system
throughput.

 6

8.4 Method: SignalHighWatermark()
When SignalHighWatermark() is invoked by the MAC_XMIT component, data flow is
paused.

8.5 Method: SignalLowWatermark()
When SignalLowWatermark () is invoked by the MAC_XMIT component, data flow is
resumed.

8.6 Method: SignalEmpty()
When SignalEmpty() is invoked by the MAC_XMIT component, data flow is resumed.

8.7 Method: SignalNAK()
When SignalNAK() is invoked by the MAC_XMIT component and the erroneous packet
is not a “dummy” packet, its ID stored to the errorPackets list for retransmission.
Retransmitted packet are assumed to be received correctly unless SignalNAK() is
invoked on its ID.

