

Audio Capture and Playback Components

FM3TR Waveform Reference Implementation

SDR Forum Contract

March 23, 2007

Revision 1.0

 2

Table of Contents

1 COMPONENT NAME 3
2 COMPONENT PROCESSING SUMMARY 3
3 WHERE USED 3
4 DATA INPUT AND OUTPUT PORTS 3
5 CONTROL INTERFACES 3
6 COMPONENT SCA PROPERTIES 3
7 COMPONENT ATTRIBUTES/KEY VARIABLES 3
8 PROCESSING DETAILS 4

8.1 AUDIO CAPTURE 4
8.2 AUDIO PLAYBACK 4

 3

1 Component Name
AudioCapture, AudioPlayback

2 Component Processing Summary
The Audio Capture component takes audio input from a microphone and streams the data
out for processing. The Audio Playback component takes audio input data and plays the
audio on the PC sound output. The audio components are typically implemented as an
audio device as the functiona lity is hardware and OS specific and not covered by the
SCA Application Environment Profile (AEP). For the FM3TR waveform reference
implementation project, they are implemented as Resources to be able to provide the
source code.

The Audio Capture and Audio Playback component implementations use Win32 SDK
calls which are not part of the SCA AEP.

3 Where used
The Audio Capture and Audio Playback components are used in the audio waveform.

4 Data Input and Output Ports
The Audio Capture component has one output port and no input ports. The Audio
Playback component has one input port and no output ports.

5 Control Interfaces
The Audio Capture and Audio Playback components inherit the control interfaces from
CF::Resource.

6 Component SCA Properties
Aside from the DLL execparams, the audio capture and audio playback components have
no additional properties.

7 Component Attributes/Key Variables
Below is a list of several key variables to the bit packetizer components with a brief
description of their purpose.

m_audiohdr A set of WAVEHDR data structures, one for each
audio sample buffer. Holds information about each
buffer and provides synchronization between the
recording/playback component and the audio device.

m_lphwi Audio Capture uses this ; a handle to the Windows

 4

default audio recording device.

m_lphwo Audio Playback uses this ; a handle to the Windows
default audio playback device.

m_audio A set of buffers that are used to pass PCM samples
between the audio playback/recording component
and the audio device; used on a round-robin schedule.

8 Processing Details
The Audio Capture and Audio Playback components handle the audio I/O via the sound
card using the Win32 SDK. Both classes inherit the Audio Component class which
implements common functionality that is used by both components.

8.1 Audio Capture
The Audio Capture component, in its main processing loop (Run() method), uses the
Win32 Waveform Audio API (waveInOpen() etc.) to read 16 bit PCM audio samples at
16kHz from the computer's default audio recording device.
The Waveform Audio API supports multi-buffering. A number of empty buffers are
supplied to the recording device, to be filled asynchronously. When a recording buffer is
filled, a flag indicates its readiness. The Audio Capture component waits for this flag to
be set, and then sends the acquired PCM samples to its output port. The buffer is then re-
initialized, and again provided to the audio device, resulting in round-robin use of the
available buffer set.

8.2 Audio Playback
The Audio Playback component uses the Win32 Waveform Audio API (waveOutOpen()
etc.) to play 16 bit PCM audio samples at 16kHz using the computer's default audio
playback device.
The Waveform Audio API supports multi-buffering. A number of full buffers are
supplied to the playback device and are played asynchronously. When playback of one
buffer's samples is complete, a flag indicates the buffer's readiness to be filled again.
The Audio Playback component, in its main processing loop (Run() method), reads audio
samples from its input port. In the ConvertToAudio() method, the samples are then
copied into the next available buffer; if all buffers are in use, the method waits until the
next one empties. The buffer is then passed to the audio playback device. This again
results in round-robin use of the buffer set.

