

CVSD Decoder Component

FM3TR Waveform Reference Implementation

SDR Forum Contract

March 23, 2007

Revision 1.0

 2

Table of Contents

1 COMPONENT NAME 3
2 COMPONENT PROCESSING SUMMARY 3
3 WHERE USED 3
4 DATA INPUT AND OUTPUT PORTS 3
5 CONTROL INTERFACES 3
6 COMPONENT SCA PROPERTIES 3
7 COMPONENT ATTRIBUTES/KEY VARIABLES 3
8 PROCESSING DETAILS 4

8.1 METHOD: DECODE() 4
8.2 METHOD: LOWPASSFILTER() 4

 3

1 Component Name
CVSD Decoder

2 Component Processing Summary
The continuously variable slope delta (CVSD) algorithm is a lossy audio encoding
scheme that uses one bit per sample to compress the amount of data transmitted over a
digital channel. Based upon delta modulation, CVSD continuously changes its slope to
track to the input signal. If the reference value (CVSD output) is greater than the input
value, a binary zero is recorded, and delta is subtracted from the reference; otherwise a
binary one is recorded and delta is added. The past N bits are stored in a register. If all N
bits are either zeros or ones, the value for delta is doubled; otherwise delta is halved. For
this implementation, N was chosen to be three. Usually the value of delta has practical
restrictions. The decoder simply reverses this process based upon the incoming bit
stream. The resulting decoded waveform is usually low-pass filtered to remove high-
frequency noise due to the lossy encoding process. This results in greater audio quality
than conventional fixed-delta encoders, particularly at higher sample rates.

3 Where used
The CVSD decoder component is used in all encoded audio waveforms, located before
the AudioPlayback component.

4 Data Input and Output Ports
The CVSD decoder has one uses and one provides data ports. The input data port
(CVSDDecoderIn) accepts a sequence of signed octets (one byte for each encoded “bit”)
for decoding. After decoding, the component pushes a sequence of signed short integers
to the output port (CVSDDecoderOut). The output sequence is the same length as the
input.

5 Control Interfaces
The CVSD decoder inherits the control interfaces from CF::Resource.

6 Component SCA Properties
Aside from DLL_ENTRY_POINT, the CVSD decoder contains no additional properties.

7 Component Attributes/Key Variables
Below is a list of several key variables to the CVSD encoding and decoding algorithms
with a brief description of their purpose.

DA_MAX Maximum level for the “digital-to-analog” converter.

 4

AD_MAX Maximum level for the “analog-to-digital” converter.

CVSD_STEP_MIN Minimum step size for CVSD encoder/decoder delta
value.

CVSD_STEP_MAX Maximum step size for CVSD encoder/decoder delta
value.

CVSD_DELTA_TC Low-pass filter time constant for delta (???)

CVSD_REF_TC Low-pass filter (integrator) time constant for input
reference signal.

m_coCoef Low-pass audio filter coefficients

FILTER_LENGTH Length of low-pass audio filter.

m_iOldbits CVSD codec state for last N bits observed

8 Processing Details
The CVSD audio decoder algorithm effectively executes as the reverse of the encoder;
the received bits are used to adjust the reference level and delta value. The
encoding/decoding process adds a significant amount of high-frequency out-of-band
noise, most of which is removed with a low-pass audio filter.

8.1 Method: Decode()
The Decode() method uses the received bits to adjust both the output level (stored in
m_vfCVSDData) and delta value. The last N (3) received bits are stored in a variable and
the value of delta is adjusted accordingly. If the past N bits are either all zeros or ones,
the value of delta is increased asymptotically towards CVSD_STEP_MAX, otherwise, its
values is decreased asymptotically towards CVSD_STEP_MIN. The output value is
adjusted by delta; a binary ‘1’ subtracts delta from the current reference while a binary
‘0’ adds. The resulting sample is stored in an output buffer (m_vfCVSDData).

8.2 Method: LowPassFilter()
The encoding/decoding process adds a significant amount of high-frequency out-of-band
noise, most of which is removed with a low-pass audio filter. This implementation uses a
51-tap finite impulse response filter that removes a significant amount of energy that is
outside of the human speech frequency band to improve audio clarity. The filter taps are
stored in the array m_coCoeff and are convolved with the output buffer in the
LowPassFilter() method before pushing to the AudioPlayback component.

