

FM3TR Packetizer Component

FM3TR Waveform Reference Implementation

SDR Forum Contract

March 23, 2007

Revision 1.0

 2

Table of Contents

1 COMPONENT NAME 3
2 COMPONENT PROCESSING SUMMARY 3
3 WHERE USED 3
4 DATA INPUT AND OUTPUT PORTS 3
5 CONTROL INTERFACES 3
6 COMPONENT SCA PROPERTIES 3
7 COMPONENT ATTRIBUTES/KEY VARIABLES 3
8 PROCESSING DETAILS 4

8.1 METHOD: SENDPREAMBLE() 4
8.2 METHOD: ENCODEFRAME() 5
8.3 METHOD: START STREAM() 5
8.4 METHOD: STOP STREAM() 5

 3

1 Component Name
FM3TR Packetizer (FM3TR_WaveformPacketizer)

2 Component Processing Summary
The FM3TR packetizer assembles frames of data by adding additional control
information for the receiver. This information includes the operational mode (voice/data)
as well as the number of hops per frame.

3 Where used
Both voice and data waveforms.

4 Data Input and Output Ports
The FM3TR packetizer has one provides (“FM3TR_WaveformPacketizerIn”) and one
uses (“FM3TR_WaveformPacketizerOut”) port. The input port accepts blocks of data
from either the CVSDEncoder or RsHopEncoder components, adds the appropriate
packetizing overhead and pushes to the output data port. Both ports operate on char
sequences.

5 Control Interfaces
The FM3TR Packetizer inherits the control interfaces from CF::Resource. Additionally,
the component contains a control interface, “LLC_control_input,” which is used for
pausing data flow to components.

6 Component SCA Properties
Aside from the DLL execparams, the FM3TR packetizer has just one SCA property
which determines in which mode the component should run. The property,
“Operational_Mode,” can take on values “data” or “voice.”

7 Component Attributes/Key Variables
Below is a list of several key variables to the FM3TR packetizer with a brief description
of their purpose.

m_a_code This is a binary sequence (±1) that has good auto-
and cross-correlation properties. The variable itself
is actually an array of chars, 32-elements long. The
“a” code is used only once and at the beginning of the
frame so that the receiver to know when to start
logging data.

m_s_code Similar to m_a_code, m_s_code is a 32-element

 4

binary sequence with good auto- and cross-
correlation properties. The “s” code is used many
times by the packetizer to convey control
information, including operational mode and hop
rate. m_inv_s_code is simply the inverse of
m_s_code.

m_llc_enable Boolean variable which governs whether or not the
Run() method should continue

8 Processing Details
Processing behind the FM3TR packetizer is fairly straighforward. Regardless of the
operational mode, the packetizer encodes exactly 320 bits of data per frame divided
equally into four data hops. A single synchronization hop at the end of the frame is used
for control information, thus totalling 5 hops per frame. Each data hop totals 80
information bits with a few rise- and transition-time bits as buffers between each hop.
These bits are ignored by the receiver and are only used as spacers such that the RF
hardware has time to switch frequencies. These bits are assembled in the
m_output_frame buffer by the EncodeFrame() method.

8.1 Method: SendPreamble()
According to the FM3TR specifications, the preamble consists of four major parts:

• A synchronization phasing pattern (sequence of 101010… 2,350 bits long)

• Synchronization a-code

• Operational mode (3 × s-code)

• Expansion mode (4 × s-code)

The entire preamble is transmitted at run time, but is not pushed as one entire block, but
rather broken up into more manageable pieces. Because the phasing pattern is so long, it
it sent in 512-element blocks. The figure below, although not to scale, demonstrates the
packet configuration of the entire preamble.

Guard time

Bit Count
0...2349 2350......x x.................................... x x ..x x.................... x

a-code

Preamble

Preamble Phasing Pattern Op. Mode (3 x s-code) Ext. Op. Mode (4 x s-code)

 5

8.2 Method: EncodeFrame()
The only difference between voice and data modes in the EncodeFrame() method is the
way the incoming data are packed. In voice mode, the data arrive directly from the
CVSD encoder which regards each byte of data as a single bit. This CORBA sequence is
exactly 320 elements long. However, in data mode, the data arrive from the
RsBlockEncoder component packed into 64 char elements, each with 5 significant bits.
This translates into 320 bits as well, but the EncodeFrame() method must first unpack the
data. Once unpacked, the data are packetized the same way as with voice mode.
A frame, as stated above, consists of exactly five hops, each 100 bits in length. The first
four hops contain application data while the fifth hop is for synchronization. The data
hop contains 80 bits of relevant data; the remaining 20 bits are used as rise/fall/transition
times between hops, viz.

The synchronization hop includes a special code that informs the receiver an end-of-
message (EOM) marker. This is achieved by adding two inverse s-codes. If not at EOM,
the packetizer uses two non- inverted s- codes. A bit-wise diagram of the sync hop is
depicted below.

8.3 Method: StartStream()
With the MAC and LLC extensions, the FM3TR waveform has the capability of
conditionally pausing the flow of data. The StartStream() method allows the Run()
method to be invoked by setting the flag m_llc_enable to “true.” The StartStream()
method is called by the FileInput_MAC_LLC component through the
“LLC_control_input” control port.

8.4 Method: StopStream()
Execution of the FM3TR packetizer can be paused if the StopStream() method is
invoked. Calling this method set the m_llc_enable flag to “false” which prevents the
Run() method from being invoked until StartStream() is called.

Transition time

Bit Count
0............4 5............. 12 13............................44 45............................ 76 77...........84 8589 90......................... 99

Sync hop

Rise time Guard time Guard time Fall time s-code s-code

Transition time

Bit Count
0....................4 5 ..84 85................89 90..................... 99

Data hop

Rise time Fall time Data block [80 bits]

