
 
 
 

 

 

 

 
FM3TR Receiver Component 

 
FM3TR Waveform Reference Implementation 

 
SDR Forum Contract 

 
March 23, 2007 

 
Revision 1.0 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 2

 
Table of Contents 

 
1 COMPONENT NAME 3 
2 COMPONENT PROCESSING SUMMARY 3 
3 WHERE USED 3 
4 DATA INPUT AND OUTPUT PORTS 3 
5 CONTROL INTERFACES 3 
6 COMPONENT SCA PROPERTIES 3 
7 COMPONENT ATTRIBUTES/KEY VARIABLES 3 
8 PROCESSING DETAILS 4 

8.1 METHOD: ACQUIRE() 4 
8.2 METHOD: CORRELATE() 4 
8.3 METHOD: EATBITS() 4 
8.4 METHOD: EXTRACTHOP() 4 
8.5 METHOD: READMORE() 4 
8.6 METHOD: SYNC() 4 

 
 
 
 



 
 
 
 

 3

1 Component Name 
FM3TR Receiver (FM3TR_WaveformReceiver) 

2 Component Processing Summary 
The FM3TR receiver dissembles packetized data by removing the overhead as well as 
separating the control information from the application data. 

3 Where used 
Both voice and data waveforms. 

4 Data Input and Output Ports 
The FM3TR receiver has one provides (“FM3TR_WaveformReceiverIn”) and one uses 
(“FM3TR_WaveformReceiverOut”) port.  The input port accepts a sequence of octets 
representing one bit each.  These data can be represented as either a hard bit (“0” or “1”) 
or a soft bit from the MSKDemodulator component. 
blocks of data from either the CVSDEncoder or RsHopEncoder components, adds the 
appropriate packetizing overhead and pushes to the output data port.  Both ports operate 
on char sequences. 

5 Control Interfaces 
The FM3TR receiver inherits the control interfaces from CF::Resource. Additionally, the 
component contains a control interface, “MAC_FlowCtrl_Out,” which is used for 
pausing data flow to components. 

6 Component SCA Properties 
Aside from the DLL execparams, the FM3TR receiver has no additional SCA properties. 

7 Component Attributes/Key Variables 
Below is a list of several key variables to the FM3TR packetizer with a brief description 
of their purpose. 

m_a_code This is a binary sequence (±1) that has good auto- 
and cross-correlation properties.  The variable itself 
is actually an array of chars, 32-elements long.  The 
“a” code is used only once and at the beginning of the 
frame so that the receiver to know when to start 
logging data. 

m_s_code Similar to m_a_code, m_s_code is a 32-element 
binary sequence with good auto- and cross-



 
 
 
 

 4

correlation properties.  The “s” code is used many 
times by the packetizer to convey control 
information, including operational mode and hop 
rate.  m_inv_s_code is simply the inverse of 
m_s_code. 

8 Processing Details 
The FM3TR waveform consists of two major sequences of data; the preamble, and the 
subsequent data frames.  The folowing methods are used to synchronize and extract 
control and data information from the incoming bit stream. 

8.1 Method: Acquire() 
The Acquire() method simply extracts the preamble from the incoming bit stream.  This 
synchronizes the receiver with the input sequence by searching for the a-code, and seven 
subsequence s-codes.  It uses the Correlate() method to extract the codes from the bit 
stream. 

8.2 Method: Correlate() 
The Correlate() method simply compares two bit sequences for similar values.  For an N-
bit correlator, the output is 

( )
1

[ ] [ ]

0
1 x y

N
b i b i

xy
i

r
−

−

=

= −∑  

8.3 Method: EatBits() 
The EatBits() method is used to ignore bits associated with rise, fall, guard, and transition 
times.  It advances the pointer in the input buffer and decreases the buffer length. 

8.4 Method: ExtractHop() 
The ExtractHop() method retrives 80 application data bits from the data hops. 

8.5 Method: ReadMore() 
Because packets arrive fragmented (a frame might be split into several CORBA 
sequences as they are passed from one component to the next), several methods might 
require more data before they can continue.  The ReadMore() method is called from 
several methods, including ExtractHop(), InitCorrelator(), and EatBits().  It simply waits 
until a sufficient amount of data is put in the input buffer before continuing. 

8.6 Method: Sync() 
The Sync() method retrives two s-codes from the synchronization hop. 


